Stoichiometry of LaAlO$_3$ films grown on SrTiO$_3$ by pulsed laser deposition

M. Golalikhani,1,4a Q. Y. Lei,1 G. Chen,2 J. E. Spanier,2 H. Ghassemi,2 C. L. Johnson,2
M. L. Tahir,2 and X. X. Xi1

1Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
2Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA

(Received 28 December 2012; accepted 4 March 2013; published online 10 July 2013)

We have studied the stoichiometry of epitaxial LaAlO$_3$ thin films on SrTiO$_3$ substrate grown by pulsed laser deposition as a function of laser energy density and oxygen pressure during the film growth. Both x-ray diffraction (0-2θ scan and reciprocal space mapping) and transmission electron microscopy (geometric phase analysis) revealed a change of lattice constant in the film with the distance from the substrate. Combined with composition analysis using x-ray fluorescence we found that the nominal unit-cell volume expanded when the LaAlO$_3$ film was La-rich, but remained near the bulk value when the film was La-poor or stoichiometric. La excess was found in all the films deposited in oxygen pressures lower than 10$^{-2}$ Torr. We conclude that the discussion of LaAlO$_3$/SrTiO$_3$ interfacial properties should include the effects of cation off-stoichiometry in the LaAlO$_3$ films when the deposition is conducted under low oxygen pressures. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811821]

I. INTRODUCTION

Since the discovery of a high-mobility conducting layer between the TiO$_2$-terminated SrTiO$_3$ substrate and LaAlO$_3$ thin film by Ohtomo and Hwang,1 the origin of this 2-dimensional electron gas (2DEG) system has been intensively studied.2 Several mechanisms have been proposed including electronic reconstruction,1–6 oxygen vacancy effects,6–10 defects due to laser bombardment,11 and interfacial mixing between LaAlO$_3$ and SrTiO$_3$.3,12,13 Recently, it has been shown both theoretically14 and experimentally15,16 that the transport property of the interface changes drastically when the LaAlO$_3$ film stoichiometry is varied. Since most of the LaAlO$_3$ films for the 2DEG studies were grown by pulsed laser deposition (PLD) and a wide range of growth conditions in terms of laser energy density and oxygen pressure have been used, a systematic study of the LaAlO$_3$ film stoichiometry as a function of PLD growth conditions is critically needed. Only few reports exist in the literature on this issue and the scopes of these studies are limited.17,18 In addition, although a low oxygen pressure during the film deposition can lead to oxygen vacancies in the SrTiO$_3$ substrate, which affect the measured transport property,6–10 it could also affect the LaAlO$_3$ film stoichiometry. It is important to separate the oxygen vacancy effect from that of cation off-stoichiometry in the LaAlO$_3$ film.

Here, we present a systematic study on the laser energy density and oxygen pressure effects on the LaAlO$_3$ film stoichiometry by structural and compositional analyses. In the range of the deposition parameters we have studied, we found that the LaAlO$_3$ film stoichiometry depends strongly on the oxygen pressure during the deposition, and not significantly on the laser energy density. The optimal oxygen pressure for stoichiometric LaAlO$_3$ films is about 100 mTorr.

Although the details of the result could be different for different experimental setups, our results indicate that LaAlO$_3$ film stoichiometry should be considered in the discussions of 2DEG properties at the LaAlO$_3$/SrTiO$_3$ interface under various deposition conditions.

II. EXPERIMENT

The LaAlO$_3$ thin films used in this work were grown on (001) SrTiO$_3$ substrates by PLD using a KrF excimer laser ($\lambda = 248$ nm, and pulse duration 25 ns) from a single crystal LaAlO$_3$ target. The depositions were carried out at various laser energy densities, from 0.7 to 2 J/cm2, and oxygen pressures, between 0.3 and 10$^{-3}$ Torr (the background vacuum is 10$^{-5}$ to 10$^{-6}$ Torr). The growth rate of the LaAlO$_3$ film was calibrated at the identical growth conditions prior to each growth using Dektak profilometer. The growth time was fixed at 15 min for all the films. In order to keep the total film thickness at about 100 nm repetition rate of the laser pulses was varied for each sample to accommodate the change in the growth rate, from 1.2 Hz (for laser energy density of 2 J/cm2 and oxygen pressure of 300 mTorr) to 13.5 Hz (for laser energy density of 0.7 J/cm2 and oxygen pressure of 10$^{-2}$ Torr). The depositions were carried out at 730 °C substrate temperature and the samples were cooled down to room temperature after growth at an oxygen pressure of 200 Torr.

The structural properties of the deposited LaAlO$_3$ films were analyzed by x-ray diffraction (XRD) using a Bruker D8 Discover diffractometer. The film texture and epitaxial quality were characterized by 0-2θ scan, azimuthal φ scan, and reciprocal space mapping (RSM), from which the out-of-plane and in-plane lattice constants of the LaAlO$_3$ films were calculated. The uncalibrated La/Al ratios presented in this paper, were determined by x-ray fluorescence (XRF) with an iXRF$^\text{TM}$ model 550 system interfaced to an FEI DB235 dual-beam scanning electron and ion beam microscope. The XRF system uses an Ag-target, an IX X-ray tube, and a
liquid nitrogen-cooled SiLi detector. The x-ray source produces a collimated 500-μm beam spot on the sample. Quantitative analysis was performed using the edso2008 software. Using high-resolution transmission electron microscopy (HRTEM) images, geometric phase analysis (GPA), was carried out to quantify the strain as a function of distance from the interface. Cross section samples were prepared via an in situ lift-out process using an FEI Strata DB235 focused ion beam (FIB) system, and then analyzed using a JEOL JEM2100 TEM operated at 200 kV.

III. RESULTS AND DISCUSSIONS

The PLD-deposited LaAlO₃ thin films grow epitaxially on the (001) SrTiO₃ substrates. Figure 1 shows (a) a θ-2θ scan and (b) an azimuthal φ scan of the (103) diffraction peak for a LaAlO₃ film deposited with a laser energy density of 1.5 J/cm² in an oxygen pressure of 100 mTorr. Besides the substrate peaks, only (00L) diffractions from the film are present in the θ-2θ scan, indicating that the c-axis of the film is oriented normal to the substrate surface. A Nelson-Riley fitting of the diffraction peaks gives a c-axis lattice constant of 3.78 ± 0.01 Å for the film. The lattice constant can also be calculated using the SrTiO₃ peak as a reference (a = 3.905 Å). The c-axis lattice constant thus calculated is 3.78 ± 0.01 Å, consistent with the Nelson-Riley fitting. Figure 1(b) shows φ scans for both the LaAlO₃ film and the SrTiO₃ substrate. Both scans show a four-fold symmetry and the film and substrate peaks overlap, suggesting a cube-on-cube epitaxial relationship LAO (100) [001]//STO (100) [001]. From the φ scan the a-axis lattice constant of the film is calculated to be 3.82 ± 0.02 Å, a tensile strain of 0.7% from the bulk value of 3.789 Å. The result indicates that the epitaxial strain in the 100 nm-thick LaAlO₃ film is mostly relaxed. The volume of the pseudo-cubic unit cell of the film is 54.988 Å³, a 1% expansion compared to the bulk value of 54.397 Å³. The epitaxial growth shown by Fig. 1 is typical of all the films in this work except that the lattice constants are different for films deposited under different conditions.

The uncalibrated cation stoichiometry of the LaAlO₃ film in Fig. 1 was measured by XRF. Because the x-ray source for XRF is brighter than the electron beam often used in energy dispersive spectroscopy (EDS), XRF provides higher sensitivity for the elemental analysis of surfaces and thin films. In the XRF spectrum in Fig. 2, emission peaks of the characteristic secondary x-rays from La and Al in the film and Sr and Ti from the substrate are seen. The peaks were fitted with Gaussian distributions, which effectively resolved the overlap of, for example, the Ti Kα and La L₃ peaks. The relative areas under the Gaussian peaks of La and Al, with the ZAF correction, were used to obtain the La/Al cation ratio, x. The Kα peak of Al and the L₃ peak of La were chosen for all the XRF analysis in this work, although the use of the L₂ and L₃ peaks of La provided similar results. For the film shown in the figure, the uncalibrated La/Al cation ratio from the XRF analysis is 0.91 ± 0.03.

LaAlO₃ films deposited under different conditions were characterized by both the XRD and the XRF measurements. The laser energy densities used were 0.7, 1.0, 1.5, and 2.0 J/cm², and the oxygen pressures used were 1 × 10⁻⁴, 1 × 10⁻³, 1 × 10⁻², 1 × 10⁻¹, and 3 × 10⁻⁴ Torr. Since both laser energy density and oxygen pressure can affect the result, all combinations of the two parameters were studied. Figure 3 shows the XRD results for three representative films deposited with different laser energy densities and oxygen pressures, resulting in different La/Al cation ratios: (a) and (d) 0.7 J/cm², 300 mTorr, and x = 0.62; (b) and (e) 1 J/cm², 100 mTorr, and x = 0.91; and (c) and (f) 1 J/cm², 10⁻⁴ Torr, and x = 1.19. Figures 3(a)–3(e) are θ-2θ profiles around the (002) SrTiO₃ Bragg reflection (the dashed lines represent the bulk c-axis lattice constant of
LaAlO$_3$). Figures 3(d)–3(f) are reciprocal space maps around the (103) peak of the SrTiO$_3$ substrate (the red “+” symbols correspond to the reciprocal point of bulk LaAlO$_3$). The θ-20 scans show broader film peaks than the substrate peak, in particular for the La-rich film, which displays a clear double-peak structure. This is confirmed by the RSM maps showing broadening of the film spots in the c direction, suggesting that the out-of-plane c-axis lattice constants of the films are not uniform across the film thickness. The peak values suggest c-axis lattice constants similar to that of the bulk LaAlO$_3$ for the La-poor and stoichiometric films and larger than the bulk value for the La-rich film. The non-uniformity is more severe in the a-axis direction, with La-rich film. The non-uniformity is more severe in the a-axis lattice constants larger than that of the bulk LaAlO$_3$ in the near stoichiometric and La-rich films.

The broadenings of the diffraction peaks in the θ-20 scans and RSM contour maps are the result of strain relaxation in the epitaxially grown LaAlO$_3$ film, which experiences a tensile stress of 3% on the SrTiO$_3$ substrate. Above a critical thickness, which depends on the deposition conditions and is around 4 nm, the strain in the LaAlO$_3$ film starts to relax. This is revealed by the result of geometric phase analysis (shown in Fig. 4), which was performed on the LaAlO$_3$ film in Fig. 1.

Figure 4 illustrates the changing of strain in the LaAlO$_3$ film relative to its interface with the SrTiO$_3$ substrate. Figure 4(a) is a low-magnification TEM image of the LaAlO$_3$ film on top of the SrTiO$_3$ substrate, showing a film thickness of \sim100 nm. From Figs. 4(b) and 4(c), which illustrate HRTEM images of the top part of the LaAlO$_3$ layer and its interface with SrTiO$_3$, respectively, one can see more contrast, indicating more strain, near the LaAlO$_3$/SrTiO$_3$ interface. The region indicated with the dotted box in Fig. 4(d) and the average strain profile shown in Fig. 4(f) represent insignificant strain gradient on top of the LaAlO$_3$ layer, which confirms its relaxation away from the interface. The average strain values on top of the LaAlO$_3$ layer was measured \sim0.06%, which is below the 0.1% resolution of the GPA technique. The dotted box covers the top 25 nm [x-axis in Fig. 4(f)] of the LaAlO$_3$ layer; therefore, the x-axis ends at the edge of the LaAlO$_3$ layer. Figures 4(e) and 4(g) illustrate the profile of the strain starting at the LaAlO$_3$/SrTiO$_3$ interface into the LaAlO$_3$ layer [x-axis in Fig. 4(g)]. The strain profile indicates that at the first \sim4 nm distance from the interface, the LaAlO$_3$ layer is under an average tensile strain of 2.37% compared to the bulk LaAlO$_3$, which decreases to 1.7% after \sim15 nm from the interface. These results confirm the existence of strain gradient in the LaAlO$_3$ layer as a function of the distance from the interface toward the film surface.

The result in Fig. 3 indicates that the strain relaxation depends on the compositions of the LaAlO$_3$ films. The
relaxation is the most gradual in the near stoichiometric film—the in-plane lattice constant ranges from that of the SrTiO$_3$ substrate to that of the bulk LaAlO$_3$. For the La-poor film, the relaxation occurs the fastest—the coherently strained layer is too thin to be detectable by RSM and the a-axis lattice constant of the film is close to the bulk value. In the La-rich film, both the in-plane and the out-of-plane lattice constants vary substantially across the film thickness, with both a- and c-axis lattice constants larger than those of the bulk LaAlO$_3$.

Ohnishi et al. have shown that lattice expansion often observed in homoepitaxial SrTiO$_3$ films is not due to oxygen vacancies but originates from cation off-stoichiometry. Thus, the lattice expansion in homoepitaxial SrTiO$_3$ films has been used as a sensitive indicator of cation off-stoichiometry. Since there is no epitaxial strain in the homoepitaxial SrTiO$_3$ film on SrTiO$_3$ substrate, the increased c-axis lattice constant alone can represent the lattice expansion. The strain and strain relaxation in the LaAlO$_3$ films on SrTiO$_3$ make the task of correlating lattice expansion to film stoichiometry much more complex as the lattice constants vary continuously across the film thickness. Assuming that the film composition does not change throughout a film, we draw lines of equal unit-cell volume on the RSM maps and take the peak intensity values [the dashed lines shown in Figs. 3(d)–3(f)] as the nominal unit-cell volumes of the films. The two equal-volume lines passing through the half maximum intensity define the error bar. In Fig. 5, the unit-cell volume versus the La/Al cation ratio is plotted for 20 LaAlO$_3$ films fabricated under different conditions. The LaAlO$_3$ bulk value is shown as a dashed line. Despite the large error bars in the volume, a trend is evident: The unit-cell volume increases from the bulk value when the film is increasingly La-rich, reaching about 4%; for La-poor and stoichiometric films, the volume expansion is not as severe and the unit-cell volume is similar to that of the bulk LaAlO$_3$. While we cannot rule out the effect of oxygen vacancies on the volume expansion in the LaAlO$_3$ films, the result clearly shows the correlation between the cation stoichiometry and the lattice expansion. Even with the complications due to strain and strain relaxation in the LaAlO$_3$ film, one can use the unit-cell volume as an indication of the film stoichiometry similar to the case of homoepitaxial SrTiO$_3$ films. In particular, when there is excess of La in the LaAlO$_3$ film the lattice expands. It is, however, not effective for detecting La deficiency in the film.

Having established the correlation between the La/Al ratio and the nominal unit-cell volume of the LaAlO$_3$ films, we plot in Fig. 6 the unit-cell volume as a function of the oxygen pressure during the deposition for different laser energy densities. Even with the large error bars, one can see that the unit-cell volume is larger than the bulk value when the oxygen pressure is 10^{-2} Torr and lower for all the laser energy densities used for the deposition. When the oxygen pressure is 10^{-1} Torr or higher, the unit-cell volume becomes closer to that of the bulk LaAlO$_3$. In Fig. 7, the cation ratio of the film as measured by XRF is plotted as a function of oxygen pressure for different laser energy densities. For the films grown under the same oxygen pressure, no significant difference was observed in composition for different laser energy densities. For the lower oxygen pressures, 10^{-2} Torr and lower, the cation ratio exhibits a large deviation from the stoichiometry, an excess of La by as much as over 50%. As the oxygen pressure is increased to 0.1 Torr, the deviation in the La/Al ratio becomes smaller and near stoichiometric. Further increase in the oxygen pressure resulted in La

![FIG. 5. Unit-cell volume of the LaAlO$_3$ films as a function of the La/Al cation ratio.](image)

![FIG. 6. Unit-cell volume of the LaAlO$_3$ films as a function of oxygen pressure during deposition for different laser energy densities.](image)

![FIG. 7. The La/Al cation ratio as a function of oxygen pressure for different laser energy densities.](image)
deficiency, which cannot be detected effectively by the unit-cell volume.

The result presented here shows that the composition of the PLD deposited LaAlO$_3$ films depends on the deposition conditions. When the oxygen pressure during the deposition is lower than 10^{-2} Torr, the film becomes La-rich. The optimal oxygen pressure for film stoichiometry is about 10^{-1} Torr. Our result may have significant implications for the study of the 2DEG at the LaAlO$_3$/SrTiO$_3$ interfaces. As most of the reported studies of the LaAlO$_3$/SrTiO$_3$ interfacial properties used LaAlO$_3$ films deposited at 10^{-2} Torr oxygen pressure or lower, these films may be La-rich, which will have an influence on the properties of the 2DEG. We should point out that the La/Al ratios reported here are the nominal values obtained from 100 nm-thick LaAlO$_3$ films that have undergone various degrees of strain relaxation. It may or may not represent the film stoichiometry in the ultrathin LaAlO$_3$ layers used in the 2DEG studies. Further, the correlation between the deposition conditions and the film stoichiometry can be different for different deposition systems. Nevertheless, our result demonstrates that one needs to take into account the LaAlO$_3$ film composition in the study of the LaAlO$_3$/SrTiO$_3$ interfacial properties at the LaAlO$_3$/SrTiO$_3$ interfaces when studying the 2DEG properties at the LaAlO$_3$/SrTiO$_3$ interfaces using LaAlO$_3$ films deposited under low oxygen pressures.

IV. CONCLUSIONS

We present here the results of structural and composition characterizations of a series of 20 epitaxial LaAlO$_3$ films grown by PLD under different conditions. Despite the strain and strain relaxation in the LaAlO$_3$ films, we found that the unit-cell volume expands by as much as 4% when the film composition is La-rich. The cation off-stoichiometry reaches over 50% La-rich when the oxygen pressure during deposition is 10^{-2} Torr or lower. No significant effect on the composition by changing the film stoichiometry is about 10 Torr oxygen pressure for film stoichiometry is about 10 Torr oxygen pressure. When the oxygen pressure during the deposition is 10 Torr, the film becomes La-rich. The optimal oxygen pressure for film stoichiometry is about 10^{-1} Torr.

Note added in proof. After the acceptance of the paper, we became aware of the paper by E. Breckenfeld et al. on the effects of LaAlO$_3$ stoichiometry on the transport properties of the LaAlO$_3$/SrTiO$_3$ interfaces. Their result clearly demonstrates the importance of the deposition conditions of the LaAlO$_3$ layer on the 2-dimensional electron gas (2DEG) system properties.

ACKNOWLEDGMENTS

The work at Temple was supported by NSF under Grant No. DMR-1245000 (M.G. and X.X.X.) and by DOE under Grant No. DE-SC0004764 (Q. Y. L. and X. X. X.). J.E.S. and G.C. acknowledge support from NSF under Grant Nos. DMR-1124696 and DMR-0722845, and access to instrumentation in the Centralized Research Facility at Drexel. M.L.T and H.G. acknowledge support from ONR under Contract No. ONR-N00014-11-1-0296.
